Perpetual Graph Searching
نویسندگان
چکیده
In graph searching, a team of mobile agents aims at clearing the edges of a contaminated graph. To clear an edge, an agent has to slide along it, however, an edge can be recontaminated if there is a path without agents from a contaminated edge to a clear edge. To goal of graph searching is to clear the graph, i.e., all edges are clear simultaneously, using the fewest number of agents. We study this problem in the minimal CORDA model of distributed computation. This model has very weak hypothesis: network nodes and agents are anonymous, have no memory of the past, and agents have no common sense of orientation. Moreover, all agents execute the same algorithm in the Look-Compute-Move manner and in an asynchronous environment. One interest of this model is that, if the clearing can be done by the agents starting from arbitrary positions (e.g., after faults or recontamination), the lack of memory implies that the clearing is done perpetually and then provides a first approach of fault-tolerant graph searching. Constraints due to the minimal CORDA model lead us to define a new variant of graph searching, called graph searching without collisions, where more than one agent cannot occupy the same node. We show that, in a centralized setting, this variant does not have the same behavior as classical graph searching. For instance, it not monotonous nor close by subgraph. We show that, in a graph with maximum degree ∆, the smallest number of agents required to clear a graph without collisions is at most ∆ times the number of searchers required when collisions are allowed. Moreover, this bound is tight up to a constant ratio. Then, we fully characterize graph searching without collisions in trees. In a distributed setting, i.e., in the minimal CORDA model, the question we ask is the following. Given a graph G, does there exist an algorithm that clears G, whatever be the initial positions of the agents on distinct vertices. In the case of a path network, we show that it is not possible is the number of agents is even in a path of odd order, or if there are at most two agents in a path with at least three vertices. We present an algorithm that clears all paths in all remaining cases. Finally, we propose an algorithm that clears any tree using a sufficient number of agents. Key-words: Distributed computing, CORDA model, graph searching, self-stabilization ∗ Partially supported by FP7 STREP EULER (N.N.). † Univ. Pierre et Marie Curie Paris 6, LIP6-CNRS UMR 7606, France ‡ MASCOTTE, INRIA, I3S(CNRS/Univ. Nice Sophia Antipolis), France. [email protected] ha l-0 06 75 23 3, v er si on 1 29 F eb 2 01 2 Nettoyage perpétuel de réseaux Résumé : Dans le cadre du nettoyage de graphes contaminés (graph searching), des agents mobiles se déplacent successivement le long des arêtes du graphe afin de les nettoyer. Le but général est le nettoyage en utilisant le moins d’agents possible. Nous plaçons notre étude dans le modèle de calcul distribué CORDA minimaliste. Ce modèle est muni d’hypothèses très faibles : les nœuds du réseau et les agents sont anonymes, n’ont pas de mémoire du passé ni sens commun de l’orientation et agissent par cycles Voir-Calculer-Agir de manière asynchrone. Un intérêt de ce modèle vient du fait que si le nettoyage peut être fait à partir de positions arbitraires des agents (par exemple, après pannes ou recontamination), l’absence de mémoire implique un nettoyage perpétuel et donc fournit une première approche de nettoyage de graphe tolérant aux pannes. Les contraintes dues au modèle CORDA minimaliste nous amènent à définir une nouvelle variante de nettoyage de graphes le nettoyage sans collision, autrement dit, plusieurs agents ne peuvent occuper simultanément un même sommet. Nous montrons que, dans un contexte centralisé, cette variante ne satisfait pas certaines propriétés classiques de nettoyage comme par exemple la monotonie. Nous montrons qu’interdire les “collisions” peut augmenter le nombre d’agents nécessaires d’un facteur au plus ∆ le degré maximum du graphe et nous illustrons cette borne. De plus, nous caractérisons complètement le nettoyage sans collision dans les arbres. Dans le contexte distribué, la question qui se pose est la suivante. Existe t’il un algorithme qui, étant donné un ensemble d’agents mobiles arbitrairement répartis sur des sommets distincts d’un réseau, permet aux agents de nettoyer perpétuellement le graphe? Dans le cas des chemins, nous montrons que la réponse est négative si le nombre de agents est pair dans un chemin d’ordre impair, ou si il y a au plus deux agents dans un chemin d’ordre au moins 3. Nous proposons un algorithme qui nettoie les chemins dans tous les cas restants, ainsi qu’un algorithme pour nettoyer les arbres lorsqu’un nombre suffisant d’agents est disponible initialement. Mots-clés : algorithme distribué, CORDA, nettoyage de graphe, auto-stabilisation ha l-0 06 75 23 3, v er si on 1 29 F eb 2 01 2 Perpetual Graph Searching 3
منابع مشابه
Better Bounds for Perpetual Gossiping
In the perpetual gossiping problem, introduced by Liestman and Richards, information may be generated at any time and at any vertex of a graph G; adjacent vertices can communicate by telephone calls. We define Wk(G) to be the minimum w such that, placing at most k calls each time unit, we can ensure that every piece of information is known to every vertex within w time units of its generation. ...
متن کاملFinding Short Right-Hand-on-the-Wall Walks in Graphs
We consider the problem of perpetual traversal by a single agent in an anonymous undirected graph G. Our requirements are: (1) deterministic algorithm, (2) each node is visited within O(n) moves, (3) the agent uses no memory, it can use only the label of the link via which it arrived to the current node, (4) no marking of the underlying graph is allowed and (5) no additional information is stor...
متن کاملMonotonicity of Non-deterministic Graph Searching
In graph searching, a team of searchers is aiming at capturing a fugitive moving in a graph. In the initial variant, called invisible graph searching, the searchers do not know the position of the fugitive until they catch it. In another variant, the searchers permanently know the position of the fugitive, i.e. the fugitive is visible. This latter variant is called visible graph searching. A se...
متن کاملGraph Searching and Related Problems
Suppose that there is a robber hiding on vertices or along edges of a graph or digraph. Graph searching is concerned with finding the minimum number of searchers required to capture the robber. We survey the major results of graph searching problems, focusing on algorithmic, structural, and probabilistic aspects of the field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012